SYNTHESIS OF THE HOST-SELECTIVE PLANT TOXINS AF IIa. AF IIc and AKII.

EMPLOYING SHARPLESS CHIRAL EPOXIDATION UNDER KINETIC CONTROL

Leslie Crombie and Sandra R. M. Jarrett.

Department of Chemistry, The University of Nottingham, Nottingham, NG7 2RD.

SUMMARY: Sharpless chiral epoxidation of the ethyl esters of (2E,4E,6Z) -, (2E,4E,6E)- and (2E,4Z,6E)-8-hydroxy-9-methyldeca-2,4,6,9-tetraenoic acid gave predominantly the (8R,9S)-epoxyalcohols. These were converted into the host-specific plant toxins AF IIa, AF IIc and AK II, thereby effecting a total synthesis of these compounds.

In the preceding communication¹ a synthesis of (2E,4E,6Z)-, (2E,4E,6E)- and (2E,4Z,6E)hydroxytetraene esters (1) - (3) by hydrostannation and Pd^o coupling was developed. These alcohols now form the basis of our synthesis of the two strawberry-type toxins AF IIa and AF IIc (4 and 5),² and the pear type AK II (6),³ as their ethyl esters. Synthetic development of (1) - (3) demands selective epoxidation forming (S)-chirality at C-9, together with the introduction of (R)-chirality at C-8. In order to effect this we have explored Sharpless' procedure⁴ using recently described conditions⁵ which permit kinetic resolution as well as stereofacial control. Preliminary epoxidations showed that the 9,10- allylic double bond was substantially more reactive than the 6,7-, as expected.

The results of Sharpless epoxidation are shown in Table 1. In the case of the all-trans-tetraene ester (2), the yield was lowered through formation of some unwanted 6,7-epoxide (11):

TABLE 1	Alcohol	Epoxide*	[α] ²³ (EtOH)
	(1)	63% (A)	+13.6° (c,0.85)
	(2)	58% (B)	+51.1º (c,0.66)
	(3)	67% (C)	+72.0° (c,0.85)

*Yield based on 50% conversion

Consideration of literature data^{4,5,6,7} indicated that the (D)-(-)-diisopropyl tartrate (DIPT) / Ti(OPri)4 / Bu^tOOH system should lead to the (S)-epoxide with the major, rapidly formed, epoxide being the desired (8R,9S) (7), along with small amounts of the enantiofacial isomer (8). The slow-forming epoxide should be (9), though enantiofacial selectivity seems less pronounced in the slow reaction and appreciable amounts of (10) might be formed. Structural examination (i.r., u.v., ¹H.n.m.r., ¹³C.n.m.r. and accurate mass data) confirmed that all three products of Table 1. had retained the correct 9,10-epoxy-

triene structures with triene geometry unaltered. For chiral analysis and for product isolation it was decided to esterify the epoxy-alcohol mixture (C) obtained from (3) with N- acetyl L-phenylalanine, and those, (A) and (B), from (1) and (2), with the silylated acid (12). The latter was synthesised by a procedure outlined by Irie and his colleagues⁸ following a sequence that involves diazotisation of isoleucine, replacement by hydroxyl with retention, and then Mitsunobo inversion. The (2R,3S)-silylated acid (12) had $[\alpha]^{23}$ +18.5° (c,1.0, EtOH).Esterification of the product (A) with (12) using DCC and 4-pyrrolidinopyridine¹⁰ followed by chromatography, gave as the major ester the (8R,9S,2'R,3'S)-(7a, R₁ = (12)) (66% of the mixture). Its ¹H.n.m.r. spectrum [the double doublet form of H-10a and H-10b at ~2.63 and 2.88 is characteristic of the (8R,9S) system] and ¹³C.n.m.r. spectra indicated >96% purity with the correct (2E,4E,6Z)-rgeometry. Desilylation (63%) with tetra-n-butylammonium fluoride gave

AF IIa toxin ethyl ester (characterised by u.v., i.r., 13C.n.m.r. and M^+), $[\alpha]^{23} + 153.3^0$ (c,0.78, EtOH), with 1H.n.m.r. data identical with those published for the natural methyl ester,² except for ethyl ester resonances.¹⁰ The remainder of the silylated product (34%) consisted of two difficultly separable (hplc) diastereoisomers of (7a, R₁ = (12)), as indicated by n.m.r. spectroscopy. It seems likely that these are the (8R,9R,2'R,3'S)-(8) and (8S,9S,2'R,3'S)-(9) diastereoisomers, the former the minor product of the fast reaction, the latter the major product of the slow reaction; both are spectroscopically differentiated from (7a,R₁ = (12)).

In a similar way, esterification (90%) of protected alcohol B gave on esterification with (12), followed by hplc, a major band (75%) and a minor band (25%) The former, (7b,R1 = (12)), having the expected spectral and other data, was desilylated (60%) to give the (8R,9S,2'R,3'S,2E,4E,6E)-stereoisomer (5) having 1H.n.m.r. data identical¹¹ with those given for AF toxin IIc² (except for ethyl ester resonances). It was characterised as for the AF IIa compound (above) and had $[\alpha]^{23}$ -4.5° (c, 0.90, EtOH). Again, the smaller band contained two difficultly separable diastereoisomers, thought to be the (8R,9R,2'R,3'S)- and the (8S,9S,2'R,3'S)-.

The third synthesis, that of AK toxin II, had an added complication in that during the esterification of the protected epoxy-alcohol product C, racemisation of the N-acetyl-L- phenylalanine occurred. The ester mixture (75%) furnished, on hplc (silica, elution ethyl acetate (1)/hexane (1)), two pairs of bands, each in the ratio 34 : 16. The two larger bands were spectroscopically very similar and comparison showed that they differed only in 1H resonances around the 2'-centre, especially the 3'-protons (faster running: quartet $\delta 3.11 - 3.15$, slower: doublet 3.12, J 6Hz). The slower running band [α]²³ +52.9° (c, 0.65, EtOH) had 1H n.m.r. data identical, except for ethyl ester resonances, with the data published for AK-toxin II,12 the structure of which is established by a single crystal X-ray determination as the (8R,9S,2'S,2E,4Z,6E)- diastereoisomer.³ The faster eluted product is therefore (2'R), [α]²³ +30.5° (c, 0.45,EtOH); both were characterised as previously. Again the two smaller bands appear to each contain (8c) and (9c) with R1 in one case N-acetyl-L-phenylalanine and in the other the -D-.

We thank Dr. M. Horsham for preliminary experiments.

REFERENCES

¹ L. Crombie, M.A. Horsham and S.R.M. Jarrett, <u>Tetrahedron Lett.</u>, 1989, preceeding communication. ² S. Nakatsuka, K. Ueda, T. Goto, M. Yamamoto, S. Nishamura and K. Kohmoto, <u>Tetrahedron Lett.</u>, 1086, <u>27</u>, 2753.

³ T. Nakashima, T. Ueno, H. Fukami, T. Taga, H. Masuda, K. Osaki, H. Otani, K. Khomoto and S. Nishimura, Agric. Biol. Chem., 1985, <u>49</u>, 807.

⁴ T. Katsuki and K.B. Sharpless, <u>J. Am. Chem. Soc.</u>, 1980, <u>102</u>, 5974. K. Martin, S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda and K.B. Sharpless, <u>J. Am. Chem. Soc.</u>, 1981, <u>103</u>, 6237. K.B. Sharpless, S. Woodward and M. Finn, <u>Pure and Appl. Chem.</u>, 1983, <u>55</u>, 1823.

⁵ Y. Gao, R.M. Hanson, J.M. Klunder, S. Ko, H. Masamune and K.B. Sharpless, <u>J. Am. Chem. Soc.</u> 1987,<u>109</u>, 5765. R.M. Hanson and K.B. Sharpless, <u>J. Org. Chem.</u>, 1986, <u>51</u>, 1922. ⁷A Pfenninger, <u>Synthesis</u>, 1986, 89.

⁸ H. Irie, K. Matsumoto, T. Kitagawa, Y. Zhang, T. Ueno, T. Nakashima and H. Fukami, <u>Chem. Pharm. Bull.</u>, 1987, 35, 2598.

⁹ A. Hassner and V. Alexanian, <u>Tetrahedron</u>, 1978,<u>46</u>, 4475. B. Neises and W. Steglich, <u>Angew. Chem. Int.</u> Ed., 1978,<u>17</u>, 522.

 10 1H.n.m.r. data for synthetic (4, R = Et) with data for natural AF IIa toxin methyl ester in parentheses: 8 H-2, 5.95d, J15.3Hz (5.95d, J15.6); H-3, 7.36dd, J11.3,15.3Hz (7.37dd, J11.2,15.6); H-4, $^{6.41dd}$, J11.3,14.8 Hz (6.40dd,J11.2,15.0); H-5, 6.92dd,J11.7,14.6Hz (6.93dd,J11.6,15.0); H-6, $^{6.33dd}$,J11.2,11.2Hz (6.33dd,J10.7,11.6); H-7, 5.52dd,J10.2,10.2Hz (5.52dd,J9.6,10.7); H-8, $^{5.82d}$,J10Hz (5.80dJ9.6); H-10A, 2.62d,J4.8Hz (2.62d,J4.6); H-10B, 2.78d,J4.7Hz (2.78d,J4.6); H-11, 1.38s (1.38br.s); H-2', 4.20d,J3.0Hz (4.19dd,J2.7,5.7); H-3',1.83m (1.83m); H-4', 1.37- 1.54m (1.36m); H-5', 0.97t,J7.4Hz (0.97t,J7.6); H-6', 0.86d,J6.8Hz (0.87d,J6.9); OH 2.63br.s (2.59d,J5.7).

¹¹ 1H.n.m.r. data for synthetic (5, R = Et) with data for natural AF IIc toxin methyl ester in parentheses: δ H-2, 5.93d,J15.3 (5.94d,J15.2); H-3, 7.29dd,J11.1,15.2Hz (7.29dd,J 11.2,15.2); H-4, 6.38dd,J11.0,14.7Hz (6.39dd,J11.2,14.4); H-5, 6.43dd, J11.0,15.1Hz (6.43dd,J10.7,14.9); H-6, 6.53dd,J10.6,14.7Hz (6.53dd,J10.7,14.4); H-7, 5.81dd,J7.3,14.8Hz (5.80dd,J7.4,14.8); H-10A, 2.63d,J4.8Hz (2.62d,J4.8); H-10B, 2.79d,J4.8Hz (2.78d,J4.8); H-11, 1.36s (1.36s); H-2', 4.23d,J2.7Hz (4.21dd,J2.8,5.8); H-3', 1.83m (1.83m); H-4', 1.36-1.56m (1.36m); H-5', 0.98t,J7.4Hz (0.97t,J7.5); H-6', 0.85d,J6.9Hz (0.87d,J6.9); OH, 2.64br.s (2.60d,J5.8).

¹² 1H.n.m.r. data for synthetic (6, R = Et) with data for AK II toxin methyl ester in parentheses: δ H-2, 5.95d,J15.2Hz (5.95d,J15.4); H-3, 7.69dd,J15.1,11.5Hz (7,70dd,J15.4,11.5); H-4, 6.20dd,J11.2,11.2Hz (6.20dd,J11.5,11.5); H-5, 6.28dd,J10.9,10.9Hz (6.29dd,J11.5,11.5); H-6, 6.84dd,J15.15,11.2Hz (6.84dd,J15.0,11.5); H-7, 5.69dd,J15.2,7.9Hz (5.70dd,J15.0,7.7); H-8, 5.27d,J7.9Hz (5.27d,J7.7); H-10A, 2.62d,J4.7Hz (2.61d,J4.6); H-10B, 2.75d,J4.75Hz (2.75,J4.6); H-11, 1.31s (1.31s); H-2', 4.91m; H-3', 3.12d,J6.1 (3.12d,J6.2); H-5' and 9', 7.09dd,J7.7,1.6Hz (7.08dd,J7.9,1.6); H-6',7',8', 7.21-7.27m (7.20-7.35m); H-11', 2.01s (2.01s); NH, 5.99br.s (5.92-5.95s)

¹³ Irie and his colleagues have recently reported different syntheses of AK II and AF IIc toxins⁸ based on (13), obtained by a lengthy (11 stage) degradation of Vitamin C as a chiral source.¹⁴

14 H. Irie, K. Matsumoto and Y. Zhang, <u>Chem. Pharm. Bull.</u>, 1986, <u>34</u>,2668.H.Irie, J. Igarashi, K. Matsumoto, Y. Yanagawa, T. Nakashima, T. Ueno and H. Fukami, Chem. Pharm. Bull., 1985, 33, 1313.

(Received in UK 16 June 1989)